Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.106
Filtrar
1.
Mol Vis ; 30: 37-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586607

RESUMO

Purpose: Congenital cataract affects 1-15 per 10,000 newborns worldwide, and 20,000-40,000 children are born every year with developmental bilateral cataracts. Mutations in the crystallin genes are known to cause congenital cataracts. Crystallins, proteins present in the eye lens, are made up of four Greek key motifs separated into two domains. Greek key motifs play an important role in compact folding to provide the necessary refractive index and transparency. The present study was designed to understand the importance of the fourth Greek key motif in maintaining lens transparency by choosing a naturally reported Y134X mutant human γD- crystallin in a Danish infant and its relationship to lens opacification and cataract. Methods: Human γD-crystallin complementary DNA (cDNA) was cloned into the pET-21a vector, and the Y134X mutant clone was generated by site-directed mutagenesis. Wild-type and mutant proteins were overexpressed in the BL21 DE3 pLysS cells of E. coli. Wild-type protein was purified from the soluble fraction using the ion exchange and gel filtration chromatography methods. Mutant protein was predominantly found in insoluble fraction and purified from inclusion bodies. The structure, stability, aggregational, and amyloid fibril formation properties of the mutant were compared to those of the wild type using the fluorescence and circular dichroism spectroscopy methods. Results: Loss of the fourth Greek key motif in human γD-crystallin affects the backbone conformation, alters the tryptophan micro-environment, and exposes a nonpolar hydrophobic core to the surface. Mutant is less stable and opens its Greek key motifs earlier with a concentration midpoint (CM) of unfolding curve of 1.5 M compared to the wild type human γD-crystallin (CM: 2.5 M). Mutant is capable of forming self-aggregates immediately in response to heating at 48.6 °C. Conclusions: Loss of 39 amino acids in the fourth Greek key motif of human γD-crystallin affects the secondary and tertiary structures and exposes the hydrophobic residues to the solvent. These changes make the molecule less stable, resulting in the formation of light-scattering particles, which explains the importance of the fourth Greek key in the underlying mechanism of opacification and cataract.


Assuntos
Catarata , Cristalino , gama-Cristalinas , Recém-Nascido , Criança , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , gama-Cristalinas/química , Cristalino/metabolismo , Catarata/genética , Catarata/metabolismo , Mutação , Mutagênese Sítio-Dirigida
2.
Invest Ophthalmol Vis Sci ; 65(4): 4, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558092

RESUMO

Purpose: To examine lens phenotypic characteristics in ßA3ΔG91 mice and determine if ßA3ΔG91 affects autophagy in the lens. Methods: We generated a ßA3ΔG91 mouse model using CRISPR/Cas9 methodology. Comparative phenotypic and biochemical characterizations of lenses from postnatal day 0 (P0), P15, and 1-month-old ßA3ΔG91 and wild-type (WT) mice were performed. The methodologies used included non-invasive slit-lamp examination, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical (IHC) analyses to determine the levels of autophagy-related genes and proteins. Transmission electron microscopy (TEM) analysis of lenses was performed to assess organelle degradation and the presence of autophagic vesicles. TUNEL staining was used to determine apoptosis in the lens. Results: Relative to WT lenses, 1-month-old ßA3ΔG91 mice developed congenital nuclear cataract and microphthalmia and showed an early loss of endoplasmic reticulum (ER) in the cortex and attenuation of nuclei degradation. This observation was confirmed by TEM analysis, as was the presence of autophagic vesicles in ßA3ΔG91 lenses. Comparative IHC and RT-qPCR analyses showed relatively higher levels of autophagy markers (ubiquitinated proteins and p62, LC3, and LAMP2 proteins) in ßA3ΔG91 lenses compared to WT lenses. Additionally, ßA3ΔG91 lenses showed relatively greater numbers of apoptotic cells and higher levels of cleaved caspase-3 and caspase-9. Conclusions: The deletion of G91 in ßA3ΔG91 mice leads to higher levels of expression of autophagy-related proteins and their transcripts relative to WT lenses. Taken together, G91 deletion in ßA3/A1-crystallin is associated with autophagy disruption, attenuation of nuclei degradation, and cellular apoptosis in the lens, which might be congenital cataract causative factors.


Assuntos
Catarata , Cristalino , Camundongos , Animais , Catarata/genética , Catarata/metabolismo , Cristalino/metabolismo , Western Blotting , Modelos Animais de Doenças , Autofagia/genética
3.
Sci Rep ; 14(1): 3683, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355836

RESUMO

To investigate the association between lactate metabolism and glaucoma, we conducted a multi-institutional cross-sectional clinical study and a retinal metabolomic analysis of mice with elevated intraocular pressure (IOP) induced by intracameral microbead injection. We compared lactate concentrations in serum and aqueous humor in age-matched 64 patients each with primary open-angle glaucoma (POAG) and cataract. Neither serum nor aqueous humor lactate concentrations differed between the two groups. Multiple regression analysis revealed that only body mass index showed a significant positive correlation with serum and aqueous humor lactate concentration in POAG patients (rs = 0.376, P = 0.002, and rs = 0.333, P = 0.007, respectively), but not in cataract patients. L-Lactic acid was one of the most abundantly detected metabolites in mouse retinas with gas chromatography and mass spectrometry, but there were no significant differences among control, 2-week, and 4-week IOP elevation groups. After 4 weeks of elevated IOP, D-glucose and L-glutamic acid ranked as the top two for a change in raised concentration, roughly sevenfold and threefold, respectively (ANOVA, P = 0.004; Tukey-Kramer, P < 0.05). Glaucoma may disrupt the systemic and intraocular lactate metabolic homeostasis, with a compensatory rise in glucose and glutamate in the retina.


Assuntos
Catarata , Glaucoma de Ângulo Aberto , Animais , Humanos , Camundongos , Humor Aquoso/metabolismo , Catarata/metabolismo , Estudos Transversais , Cromatografia Gasosa-Espectrometria de Massas , Glaucoma de Ângulo Aberto/metabolismo , Ácido Glutâmico/metabolismo , Homeostase , Pressão Intraocular , Ácido Láctico/metabolismo , Retina/metabolismo
4.
Mol Cell Endocrinol ; 586: 112174, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301842

RESUMO

As an oral antidiabetic agent, dichloroacetate (DCA) has been proven to improve diabetes and related complications. However, its functional role in diabetic cataract (DC) remains to be elucidated. This study was to define the role of DCA and its underlying molecular mechanism in DC in vitro and in vivo. In this study, it was shown that DCA dose-dependently ameliorated DC formation and development in DM rats. In addition, DCA significantly increased cell viability, reduced apoptosis, and inhibited EMT and oxidative stress of high glucose (HG)-treated SRA-01/04 cells in a concentration-dependent manner. Besides, it was revealed that Indoleamine 2,3-dioxygenase 1 (IDO1) expression was upregulated in lenses of DM rats and HG-treated SRA-01/04 cells, which was reversed by DCA. In addition, DCA abrogated the activation of the p38 MAPK signaling in the lenses of DM rats and HG-treated SRA-01/04 cells. Further experiments showed that IDO1 upregulation activated the p38 MAPK signaling in HG-challenged SRA-01/04 cells. Moreover, IDO1 overexpression partially reversed DCA-mediated inactivation of p38 MAPK signaling and suppression of HG-induced damage to SRA-01/04 cells. To sum up, our findings showed that DCA prevented DC-related apoptosis, EMT, and oxidative stress via inactivating IDO1-dependent p38 MAPK signaling.


Assuntos
Catarata , Complicações do Diabetes , Diabetes Mellitus , Ratos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Catarata/tratamento farmacológico , Catarata/metabolismo , Apoptose , Glucose/metabolismo
5.
Exp Eye Res ; 241: 109817, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340945

RESUMO

Previous studies have shown that the development of age-related cataract (ARC) is involved in lens epithelium dysfunction, which is associated with abnormally expressed circular RNAs (circRNAs). The current work aims to probe the role of circSTRBP (hsa_circ_0088,427) in hydrogen peroxide (H2O2)-induced lens epitheliums. Lens epithelium tissues were harvested from ARC or normal subjects (n = 23). CircSTRBP, spermatid perinuclear RNA binding protein (STRBP), and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (NOX4) levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation, cycle progression, and apoptosis were assessed using 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and flow cytometry assays. Caspase 3 activity, reactive oxygen species (ROS), malondialdehyde (MDA), and Glutathione peroxidases (GSH-PX) levels were detected using corresponding kits. NOX4 protein level was determined using Western blot. The interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and circSTRBP or NOX4 was assessed through RNA immunoprecipitation (RIP). CircSTRBP and NOX4 abundances were increased in lens epithelium samples from ARC patients and H2O2-treated SRA01/04 cells. CircSTRBP knockdown might abolish H2O2-triggered SRA01/04 cell proliferation repression and apoptosis and oxidative stress promotion. In mechanism, circSTRBP is bound with IGF2BP1 and improves the stability and expression of NOX4 mRNA in SRA01/04 cells. CircSTRBP facilitated H2O2-induced SRA01/04 cell apoptosis and oxidative stress through by enhancing NOX4 mRNA stability via recruiting IGF2BP1, providing novel insights for ARC progression and treatment.


Assuntos
Catarata , Cristalino , MicroRNAs , Humanos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Cristalino/metabolismo , Apoptose , Catarata/genética , Catarata/metabolismo , Epitélio/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética
6.
Chem Biol Drug Des ; 103(2): e14491, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38404215

RESUMO

N6-methyladenosine (m6 A) modification has been reported to have roles in modulating the development of diabetic cataract (DC). Methyltransferase-like 3 (METTL3) is a critical m6 A methyltransferase involving in m6 A modification activation. Here, we aimed to explore the action and mechanism of METTL3-mediated maturation of miR-4654 in DC progression. Human lens epithelial cells (HLECs) were exposed to high glucose (HG) to imitate DC condition in vitro. Levels of genes and proteins were tested via qRT-PCR and western blotting assays. The proliferation and apoptosis of HLECs were evaluated by cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays, respectively. Oxidative stress was analyzed by detecting the contents of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). The binding of miR-4654 and SOD2 was confirmed by dual-luciferase reporter assay. The m6 A-RNA immunoprecipitation (MeRIP) assay detected the m6 A modification profile. Thereafter, we found that miR-4654 expression was elevated in DC samples and HG-induced HLECs. MiR-4654 knockdown reversed HG-mediated apoptosis and oxidative stress in HLECs. Mechanistically, miR-4654 directly targeted SOD2, silencing of SOD2 abolished the protective effects of miR-4654 knockdown on HLECs under HG condition. In addition, METTL3 induced miR-4654 maturation through promoting pri-miR-4654 m6 A modification, thereby increasing miR-4654 content in HLECs. METTL3 was highly expressed in DC samples and HG-induced HLECs, METTL3 deficiency protected HLECs against HG-mediated apoptotic and oxidative injury via down-regulating miR-4654. In all, METTL3 induced miR-4654 maturation in a m6 A-dependent manner, which was then reduced SOD2 expression, thus promoting apoptosis and oxidative stress in HLECs, suggesting a novel path for DC therapy.


Assuntos
Catarata , Complicações do Diabetes , MicroRNAs , Superóxido Dismutase , Humanos , Apoptose , Catarata/genética , Catarata/metabolismo , Células Epiteliais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339172

RESUMO

The study investigated a profile of chemokines and growth factors in the aqueous humor (AH) of eyes with Fuch's endothelial corneal dystrophy (FECD) and cataracts in comparison with cataract patients as a control group. A total of 52 AH samples (26 FECD + cataract and 26 cataract/control) were collected before cataract surgery. None of the patients had any clinically apparent inflammation at the time of AH collection. The AH levels of MCP-1 (CCL2), MIP-1α (CCL3), MIP-1ß(CCL4), RANTES (CCL5), eotaxin (CCL11), IP-10 (CXCL10), FGF basic, G-CSF, GM-CSF, PDGF-bb, and VEGF were compared between the groups. The analyses were performed using the Bio-Plex 200 System from Bio-Rad. Among the studied parameters, the AH levels of RANTES, eotaxin, and IP-10 significantly increased in the FECD + cataract eyes, compared with the cataract controls (p < 0.05). Elevated levels of the RANTES, Eotaxin, and IP-10 indicate more intense inflammation in the eyes of patients in the FECD + cataract group. Moreover, these factors exhibit potential as predictive biomarkers for early detection of FECD in cataract patients. The discovery of elevated concentrations of biochemical markers in a patient, who has not yet received a clinical diagnosis, may suggest the need for heightened observation of the other eye to monitor the potential development of FECD.


Assuntos
Catarata , Distrofias Hereditárias da Córnea , Humanos , Citocinas/metabolismo , Humor Aquoso/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocinas/metabolismo , Catarata/metabolismo , Inflamação/metabolismo , Distrofias Hereditárias da Córnea/metabolismo
8.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339200

RESUMO

α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract formation, the concentration of αABc in the eye lens cytoplasm decreases, with a corresponding increase in the membrane-bound αABc. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the role of cholesterol (Chol) and Chol bilayer domains (CBDs) in the binding of αAc, αBc, and αABc to the Chol/model of human lens-lipid (Chol/MHLL) membranes. The maximum percentage of membrane surface occupied (MMSO) by αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trends: MMSO (αAc) > MMSO (αBc) ≈ MMSO (αABc), indicating that a higher amount of αAc binds to these membranes compared to αBc and αABc. However, with an increase in the Chol concentration in the Chol/MHLL membranes, the MMSO by αAc, αBc, and αABc decreases until it is completely diminished at a mixing ratio of 1.5. The Ka of αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trend: Ka (αBc) ≈ Ka (αABc) > Ka (αAc), but it was close to zero with the diminished binding at a Chol/MHLL mixing ratio of 1.5. The mobility near the membrane headgroup regions decreased with αAc, αBc, and αABc binding, and the Chol antagonized the capacity of the αAc, αBc, and αABc to decrease mobility near the headgroup regions. No significant change in membrane order near the headgroup regions was observed, with an increase in αAc, αBc, and αABc concentrations. Our results show that αAc, αBc, and αABc bind differently with Chol/MHLL membranes at mixing ratios of 0 and 0.5, decreasing the mobility and increasing hydrophobicity near the membrane headgroup region, likely forming the hydrophobic barrier for the passage of polar and ionic molecules, including antioxidants (glutathione), creating an oxidative environment inside the lens, leading to the development of cataracts. However, all binding was completely diminished at a mixing ratio of 1.5, indicating that high Chol and CBDs inhibit the binding of αAc, αBc, and αABc to membranes, preventing the formation of hydrophobic barriers and likely protecting against cataract formation.


Assuntos
Catarata , Cristalinas , Cristalino , alfa-Cristalinas , Humanos , Cristalino/metabolismo , Catarata/metabolismo , Cristalinas/metabolismo , Colesterol/metabolismo , Lipídeos
9.
Int J Biol Macromol ; 262(Pt 2): 130191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360245

RESUMO

Congenital cataract is a major cause of childhood blindness worldwide, with crystallin mutations accounting for over 40 % of gene-mutation-related cases. Our research focused on a novel R114C mutation in a Chinese family, resulting in bilateral coronary cataract with blue punctate opacity. Spectroscopic experiments revealed that ßA3-R114C significantly altered the senior structure, exhibiting aggregation, and reduced solubility at physiological temperature. The mutant also displayed decreased resistance and stability under environmental stresses such as UV irradiation, oxidative stress, and heat. Further, cellular models confirmed its heightened sensitivity to environmental stresses. These data suggest that the R114C mutation impairs the hydrogen bond network and structural stability of ßA3-crystallin, particularly at the boundary of the second Greek-key motif. This study revealed the pathological mechanism of ßA3-R114C and may help in the development of potential treatment strategies for related cataracts.


Assuntos
Catarata , Cristalinas , Humanos , Cristalinas/genética , Cristalinas/metabolismo , Catarata/genética , Catarata/metabolismo , Mutação
10.
J Mol Biol ; 436(8): 168499, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401625

RESUMO

Small heat shock proteins (sHSPs) are ATP-independent chaperones vital to cellular proteostasis, preventing protein aggregation events linked to various human diseases including cataract. The α-crystallins, αA-crystallin (αAc) and αB-crystallin (αBc), represent archetypal sHSPs that exhibit complex polydispersed oligomeric assemblies and rapid subunit exchange dynamics. Yet, our understanding of how this plasticity contributes to chaperone function remains poorly understood. Using biochemical and biophysical analyses combined with single-particle electron microscopy (EM), we examined structural changes in αAc, αBc and native heteromeric lens α-crystallins (αLc) in their apo-states and at varying degree of chaperone saturation leading to co-aggregation, using lysozyme and insulin as model clients. Quantitative single-particle analysis unveiled a continuous spectrum of oligomeric states formed during the co-aggregation process, marked by significant client-triggered expansion and quasi-ordered elongation of the sHSP oligomeric scaffold, whereby the native cage-like sHSP assembly displays a directional growth to accommodate saturating conditions of client sequestration. These structural modifications culminated in an apparent amorphous collapse of chaperone-client complexes, resulting in the creation of co-aggregates capable of scattering visible light. Intriguingly, these co-aggregates maintain internal morphological features of highly elongated sHSP oligomers with striking resemblance to polymeric α-crystallin species isolated from aged lens tissue. This mechanism appears consistent across αAc, αBc and αLc, albeit with varying degrees of susceptibility to client-induced co-aggregation. Importantly, our findings suggest that client-induced co-aggregation follows a distinctive mechanistic and quasi-ordered trajectory, distinct from a purely amorphous process. These insights reshape our understanding of the physiological and pathophysiological co-aggregation processes of α-crystallins, carrying potential implications for a pathway toward cataract formation.


Assuntos
Catarata , Cristalinas , Proteínas de Choque Térmico Pequenas , alfa-Cristalinas , Humanos , Idoso , alfa-Cristalinas/metabolismo , Chaperonas Moleculares/metabolismo , Cristalinas/metabolismo , Catarata/metabolismo
11.
Curr Eye Res ; 49(5): 496-504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38200696

RESUMO

PURPOSE: To identify the inactive genes in cataract lenses and explore their function in lens epithelial cells (LECs). METHODS: Lens epithelium samples obtained from both age-related cataract (ARC) patients and normal donors were subjected to two forms of histone H3 immunoprecipitation: H3K9ac and H3K27me3 chromatin immunoprecipitation (ChIP), followed by ChIP-seq. The intersection set of "active genes in normal controls" and "repressed genes in cataract lenses" was identified. To validate the role of a specific gene, ETV1, within this set, quantitative polymerase chain reaction (qPCR), western blot, and immunofluorescence were performed using clinical lens epithelium samples. Small interference RNA (siRNA) was utilized to reduce the mRNA level of ETV1 in cultured LECs. Following this, transwell assay and western blot was performed to examine the migration ability of the cells. Furthermore, RNA-seq analysis was conducted on both cell samples with ETV1 knockdown and control cells. Additionally, the expression level of ETV1 in LECs was examined using qPCR under H2O2 treatment. RESULTS: Six genes were identified in the intersection set of "active genes in normal controls" and "repressed genes in ARC lenses". Among these genes, ETV1 showed the most significant fold-change decrease in the cataract samples compared to the control samples. After ETV1 knockdown by siRNA in cultured LECs, reduced cell migration was observed, along with a decrease in the expression of ß-Catenin and Vimentin, two specific genes associated with cell migration. In addition, under the oxidative stress induced by H2O2 treatment, the expression level of ETV1 in LECs significantly decreased. CONCLUSIONS: Based on the findings of this study, it can be concluded that ETV1 is significantly reduced in human ARC lenses. The repression of ETV1 in ARC lenses appears to contribute to the disrupted differentiation of lens epithelium, which is likely caused by the inhibition of both cell differentiation and migration processes.


Assuntos
Catarata , Proteínas de Ligação a DNA , Cristalino , Fatores de Transcrição , Humanos , Catarata/genética , Catarata/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Cristalino/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Sci Rep ; 14(1): 1080, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212520

RESUMO

This study aimed to investigate the changes in clinical parameters of dry eye disease and meibomian gland dysfunction in both the operated and untreated fellow eyes of patients who underwent unilateral cataract surgery with the short-term administration of anti-inflammatory eye drops in the surgical eye. The medical charts of 57 consecutive patients who underwent unilateral cataract surgery and received 1% prednisolone acetate and non-steroidal anti-inflammatory drug (NSAID, 0.1% bromfenac sodium) eye drops were reviewed. The preoperative ocular surface disease index questionnaire score (38.9 ± 20.5) decreased significantly to 15.2 ± 16.4 at post-surgical 1 week and further to 12.8 ± 11.4 after 1 month. Although meibum quality grade increased and corneal sensitivity decreased at 1 week in operated eyes, corneal erosion scores and Sjogren's International Collaborative Clinical Alliance ocular staining scores even improved over a month in the untreated fellow eyes. The tear matrix metalloproteinase (MMP)-9 grade decreased in both operated eyes and untreated fellow eyes after 1 month from surgery. In conclusion, the short-term topical anti-inflammatory treatment using steroid and NSAID eye drops in the operated eye after cataract surgery decreased subjective ocular surface discomfort and improved ocular surface staining scores and tear MMP-9 expression in the untreated fellow eyes.


Assuntos
Extração de Catarata , Catarata , Síndromes do Olho Seco , Humanos , Soluções Oftálmicas/uso terapêutico , Glândulas Tarsais/metabolismo , Extração de Catarata/efeitos adversos , Lágrimas/metabolismo , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/etiologia , Síndromes do Olho Seco/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/metabolismo , Catarata/metabolismo
13.
J Cell Mol Med ; 28(3): e18111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235996

RESUMO

Primary angle-closure glaucoma (PACG) is the leading cause of irreversible blindness in the world. Angle closure induced by pupil block and secondary iris synechia is the fundamental pathology of the PACG. The molecular mechanisms of angle closure have not yet been clearly illustrated. This study was designed to investigate the protein difference in the aqueous humour and explore new biomarker of the PACG. Aqueous humour (AH) was collected from patients with acute primary angle closure (APAC) and cataract (n = 10 in APAC group) and patients with cataract only (n = 10 in control group). Samples were pooled and measured using label-free proteome technology. Then, the differentially expressed proteins (DEPs) were verified by ELISA using independent AH samples (n = 20 each group). More than 400 proteins were revealed in both groups through proteomics. Comparing the two groups, there were 91DEPs. These proteins participate in biological activities such as inflammation, fibrosis, nerve growth and degeneration and metabolism. We found that the expression of transforming growth factor-ß2 and matrilin2 was downregulated in the APAC group. The two proteins are related to inflammation and extracellular matrix formation, which might be involved in angle closure. This study characterized DEPs in AH of the APAC and found a downregulated protein matrilin2.


Assuntos
Humor Aquoso , Catarata , Humanos , Doença Aguda , Humor Aquoso/metabolismo , Catarata/metabolismo , Ensaio de Imunoadsorção Enzimática , Inflamação/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Proteínas Matrilinas/metabolismo
14.
Free Radic Biol Med ; 210: 258-270, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042221

RESUMO

One of the major pathological processes in cataracts has been identified as ferroptosis. However, studies on the iron metabolism mechanism in lens epithelial cells (LECs) and the methods of effectively alleviating ferroptosis in LECs are scarce. Along these lines, we found that in the ultraviolet radiation b (UVB) induced cataract model in vitro and in vivo, the ferritin of LECs is over-degraded by lysosomes, resulting in the occurrence of iron homeostasis disorder. Glycine can affect the ferritin degradation through the proton-coupled amino acid transporter (PAT1) on the lysosome membrane, further upregulating the content of nuclear factor erythrocyte 2 related factor 2 (Nrf2) to reduce the damage of LECs from two aspects of regulating iron homeostasis and alleviating oxidative stress. By co-staining, we further demonstrate that there is a more sensitive poly-(rC)-binding protein 2 (PCBP2) transportation of iron ions in LECs after UVB irradiation. Additionally, this study illustrated the increased expression of nuclear receptor coactivator 4 (NCOA4) in NRF2-KO mice, indicating that Nrf2 may affect ferritin degradation by decreasing the expression of NCOA4. Collectively, glycine can effectively regulate cellular iron homeostasis by synergistically affecting the lysosome-dependent ferritin degradation and PCBP2-mediated ferrous ion transportation, ultimately delaying the development of cataracts.


Assuntos
Catarata , Ferritinas , Camundongos , Animais , Ferritinas/metabolismo , Glicina/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Raios Ultravioleta , Ferro/metabolismo , Células Epiteliais/metabolismo , Catarata/metabolismo , Homeostase/fisiologia , Lisossomos/metabolismo
15.
J Chem Theory Comput ; 20(4): 1740-1752, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38078935

RESUMO

Cataracts, a major cause of global blindness, contribute significantly to the overall prevalence of blindness. The opacification of the lens, resulting in cataract formation, primarily occurs due to the aggregation of crystallin proteins within the eye lens. Despite the high concentration of these crystallins, they remarkably maintain the lens transparency and refractive index. α-Crystallins (α-crys), acting as chaperones, play a crucial role in preventing crystallin aggregation, although the exact molecular mechanism remains uncertain. In this study, we employed a combination of molecular docking, all-atom molecular dynamics simulations, and advanced free energy calculations to investigate the interaction between γD-crystallin (γD-crys), a major structural protein of the eye lens, and α-crystallin proteins. Our findings demonstrate that α-crys exhibits an enhanced affinity for the NTD2 and CTD4 regions of γD-crys. The NTD2 and CTD4 regions form the interface between the N-terminal domain (NTD) and the C-terminal domain (CTD) of the γD-crys protein. By binding to the interface region between the NTD and CTD of the protein, α-crys effectively inhibits the formation of domain-swapped aggregates and mitigates protein aggregation. Analysis of the Markov state models using molecular dynamics trajectories confirms that minimum free energy conformations correspond to the binding of the α-crystallin domain (ACD) of α-crys to NTD2 and CTD4 that form the interdomain interface.


Assuntos
Catarata , alfa-Cristalinas , gama-Cristalinas , Humanos , alfa-Cristalinas/metabolismo , gama-Cristalinas/química , Simulação de Acoplamento Molecular , Catarata/metabolismo , Cegueira
16.
Curr Eye Res ; 49(4): 380-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108278

RESUMO

PURPOSE: To observe the effects of oxidative stress on vascular endothelial growth factor (VEGF) and connections of lens epithelial cells. METHODS: Human lens epithelium of patients with age-related cataract (ARC), both SRA01/04 cells and whole mice lens stimulated by H2O2 were employed. VEGF in human aqueous humor of ARC-patients and the supernatant of SRA01/04 cells was determined by ELISA. The expressions of VEFG in human lens epithelium were detected by immunofluorescence staining. Multiple linear regression analysis and spearman rank-order correlation were used to determine the associations between VEGF and parameters of ARC individuals. In H2O2-induced SRA01/04 cells, Catalase (CAT), PP1 (inhibitor of c-Src kinase) and Avastin (VEGF antibody) were used to inhibit the effects of H2O2, activation of c-Src kinase and VEGF, which were detected by Western blot. The alterations of ZO-1 and N-cadherin were tested by immunofluorescence staining and Western blot. In H2O2-induced whole lens, the changes of opacification area in different treatment of inhibitors were observed. RESULTS: The secretion of VEGF in aqueous humor and expression of VEGF in the lens epithelium of ARC patients increased significantly with age. In H2O2-induced SRA01/04 cells, the VEGF in the supernatant was increased with the culture duration and the dose of H2O2. The expressions of p-Src418 and VEGF were also up-regulated, whereas the expressions of ZO-1 and N-cadherin were down-regulated. CAT effectively prevented these changes induced by H2O2, while PP1 inhibited not only p-Src418 but also up-regulation of VEGF, Avastin partially inhibited VEGF up-regulation. Both PP1 and Avastin prevented down-regulation of ZO-1 and N-cadherin, respectively, but Avastin combined with PP1 had no significant synergistic effects. In H2O2-induced cataract, CAT prevented development of opacification area effectively, and PP1 and Avastin did partially. CONCLUSIONS: Oxidative stress disrupts connections of lens epithelial cells by activating c-Src/VEGF, inhibiting which may prevent cataract.


Assuntos
Catarata , Cristalino , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Tirosina Quinase CSK/metabolismo , Bevacizumab/farmacologia , Peróxido de Hidrogênio/farmacologia , Catarata/metabolismo , Cristalino/metabolismo , Células Epiteliais/metabolismo , Estresse Oxidativo , Caderinas , Apoptose
17.
Bioengineered ; 15(1): 2297320, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38155415

RESUMO

Exosomes are membranous structures measuring between 40-120 nm that are secreted by various cells of the human body into the body fluid system. Exosomes contain proteins, mRNA, miRNA, and signaling molecules, and physiologically they assist in the intercellular transport of proteins and RNA molecules. In this study, we used an immunoaffinity filter paper platform combined with scanning electron microscopy and microfluidic systems to detect the size of exosomes within the aqueous humor. Eight aqueous humor samples showed three distinct sizes of exosomes that were significantly different on scanning electron microscopy(P < 0.01). We further used nanoparticle tracking analysis to assess the size distribution of exosomes within the aqueous humor. We found significantly different distributions of exosomes between patients with three different ocular diseases and patients with normal cataracts as controls. An obvious peak of exomeres(size around 35 nm)was found in the patients with central retinal vein occlusion and vitreous hemorrhage. Flare-ups of large exosomes(size 90-120 nm)were found in the patients with the inflammatory ocular disease pars planitis. No obvious peaks in exomeres or large exosomes were found in the control group. There was a high association between the distribution of exosomes and the pathogenesis of ocular diseases. After intravitreal anti-vascular endothelial growth factor treatment, the aqueous humor from the patients with neovascular diseases showed a significant reduction in exosomes in nanoparticle tracking analysis. These findings suggest that at least three distinct sizes of exosomes exist in the aqueous humor:(1)exomeres:<35 nm;(2)small exosomes:60-80 nm; and (3)large exosomes:90-120 nm. Different sizes of exosomes may have different implications in normal or diseased eyes.


Three different sized exosomes were identified in aqueous humor.The distribution of exosome size was significantly different between the patients with inflammatory and neovascularization retinal diseases.After intravitreal anti-vascular endothelial growth factor treatment, the aqueous humor from patients with neovascular diseases showed a significant reduction in exosomes in nanoparticle tracking analysis.


Assuntos
Catarata , Exossomos , MicroRNAs , Doenças Retinianas , Humanos , Exossomos/genética , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , MicroRNAs/metabolismo , Humor Aquoso/metabolismo , Catarata/genética , Catarata/metabolismo
18.
Invest Ophthalmol Vis Sci ; 64(15): 6, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051262

RESUMO

Purpose: Oxidative stress and cellular senescence are risk factors for age-related cataract. Heme oxygenase 1 (HO-1) is a critical antioxidant enzyme and related to autophagy. Here, we investigate the crosstalk among HO-1, oxidative stress, and cellular senescence in mouse lens epithelial cells (LECs). Methods: The gene expression of HO-1, p21, LC3, and p62 was measured in human samples. The protective properties of HO-1 were examined in hydrogen peroxide (H2O2)-damaged LECs. Autophagic flux was examined by Western blot and mRFP-GFP-LC3 assay. Western blotting and lysotracker staining were used to analyze lysosomal function. Flow cytometry was used to detect intracellular reactive oxygen species and analyze cell cycle. Senescence-associated ß-galactosidase assay was used to determine cellular senescence. The crosstalk between HO-1 and transcription factor EB (TFEB) was further observed in TFEB-knockdown cells. The TFEB binding site in the promoter region of Hmox1 was predicted by the Jasper website and was confirmed by chromatin immunoprecipitation assay. Results: HO-1 gene expression decreased in LECs of patients with age-related nuclear cataract, whereas mRNA expression levels of p21, LC3, and p62 increased. Upon H2O2-induced oxidative stress, LECs showed the characteristics of autophagic flux blockade, lysosomal dysfunction, and premature senescence. Interestingly, HO-1 significantly restored the impaired autophagic flux and lysosomal function and delayed cellular senescence. TFEB gene silencing greatly reduced the HO-1-mediated autophagic restoration, leading to a failure to prevent LECs from oxidative stress and premature senescence. Conclusions: We demonstrated HO-1 effects on restoring autophagic flux and delaying cellular senescence under oxidative stress in LECs, which are dependent on TFEB.


Assuntos
Catarata , Peróxido de Hidrogênio , Animais , Humanos , Camundongos , Autofagia , Catarata/prevenção & controle , Catarata/metabolismo , Senescência Celular , Células Epiteliais/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo
19.
Cells ; 12(23)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067155

RESUMO

The anterior lens epithelium has the ability to differentiate into lens fibres throughout its life. The present study aims to identify and functionally characterize the adult stem cells in the human lens epithelium. Whole mounts of lens epithelium from donor eyes (normal/cataract) were immunostained for SOX2, gap junction protein alpha 1 (GJA1), PAX6, α, ß and γ-crystallins, followed by a confocal analysis. The functional property of adult stem cells was analysed by their sphere forming ability using cultured lens epithelial cells from different zones. Based on marker expression, the lens epithelium was divided into four zones: the central zone, characterized by a small population of PAX6+, GJA1-, ß-crystallin- and γ-crystallin- cells; the germinative zone, characterized by PAX6+, GJA1+, ß-crystallin- and γ-crystallin-; the transitional zone, characterized by PAX6+, GJA1+, ß-crystallin+ and γ-crystallin-; and the equatorial zone, characterized by PAX6+/-, GJA1+, ß-crystallin+, and γ-crystallin+ cells. The putative lens epithelial stem cells identified as SOX2+ and GJA1 membrane expression negative cells were located only in the central zone (1.89 ± 0.84%). Compared to the other zones, a significant percentage of spheres were identified in the central zone (1.68 ± 1.04%), consistent with the location of the putative adult lens epithelial stem cells. In the cataractous lens, an absence of SOX2 expression and a significant reduction in sphere forming ability (0.33 ± 0.11%) were observed in the central zone. The above findings confirmed the presence of putative stem cells in the central zone of the adult human lens epithelium and indicated their probable association with cataract development.


Assuntos
Catarata , gama-Cristalinas , Adulto , Humanos , gama-Cristalinas/metabolismo , Células Epiteliais/metabolismo , Catarata/metabolismo , beta-Cristalinas/metabolismo , Células-Tronco/metabolismo
20.
Invest Ophthalmol Vis Sci ; 64(15): 12, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38079167

RESUMO

Purpose: Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is a predominant pathological process underlying fibrotic cataracts. Here we investigated the role and mechanism of lanosterol synthase (LSS), a key rate-limiting enzyme in sterol biosynthesis, in EMT of LECs. Methods: Human lens epithelial explants, primary rabbit LECs, and whole rat lenses were treated with TGFß2. RNA-sequencing was conducted to explore genetic changes during fibrosis of human lens epithelial explants. Loss- and gain-of-function studies were performed in primary LECs to investigate roles and mechanisms of LSS, lanosterol and sterol regulatory element binding transcription protein 1 (SREBP1) in EMT. Rat lenses were applied to evaluate the potential effect of lanosterol on lens fibrosis. Expression of LSS, SREBP1, EMT-related regulators, and markers were analyzed by Western blot, qRT-PCR, or immunofluorescent staining. Results: LSS and steroid biosynthesis were downregulated in TGFß2-induced lens fibrosis. LSS inhibition directly triggered EMT by inducing Smad2/3 phosphorylation and nucleus translocation, an overexpression of LSS protected LECs from EMT by inhibiting Smad2/3 activation. Moreover, LSS inhibition decreased the expression of SREBP1, which regulated EMT via intervening TGFß2/Smad2/3 transduction. Furthermore, lanosterol protected LECs from EMT caused by both TGFß2 treatment and LSS inhibition via suppressing Smad2/3 activation and maintained lens transparency by preventing fibrotic plaques formation. Conclusions: We first identified that LSS protected LECs from EMT and played an antifibrotic role to maintain lens transparency. Additionally, lanosterol and sterol biosynthesis regulation might be promising strategies for preventing and treating fibrotic cataracts.


Assuntos
Catarata , Cristalino , Animais , Humanos , Coelhos , Ratos , Catarata/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Lanosterol/metabolismo , Lanosterol/farmacologia , Cristalino/metabolismo , Fator de Crescimento Transformador beta2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...